Identification of Early and Extra-Early Maturing Tropical Maize Inbred Lines with Multiple Disease Resistance for Enhanced Maize Production and Productivity in Sub-Saharan Africa

Author:

Bankole Faith A.12ORCID,Badu-Apraku Baffour1,Salami Abiodun O.2,Falade Titilayo D. O.1,Bandyopadhyay Ranajit1ORCID,Ortega-Beltran Alejandro1ORCID

Affiliation:

1. International Institute of Tropical Agriculture, Ibadan, Nigeria

2. Obafemi Awolowo University, Ile-Ife, Nigeria

Abstract

Maize, a staple for millions across sub-Saharan Africa (SSA), faces major biotic constraints affecting production and safety of the crop. These include northern corn leaf blight (NCLB), southern corn leaf blight (SCLB), Curvularia leaf spot (CLS), and aflatoxin contamination by Exserohilum turcicum, Bipolaris maydis, Curvularia lunata, and Aspergillus flavus, respectively. Farmers in SSA would benefit tremendously if high-yielding maize hybrids with multiple disease resistance (MDR) were developed and commercialized. In all, 49 early-maturing (EM; 90 to 95 days to physiological maturity) and 55 extra-early-maturing (EEM, 80 to 85 days to physiological maturity) inbred lines developed by the International Institute of Tropical Agriculture were identified as resistant to NCLB in field evaluations in multiple agroecologies of Nigeria in 2017 and 2018. From each maturity group, the 30 most resistant inbreds were selected for evaluation for resistance to SCLB and CLS using a detached-leaf assay. Additionally, the inbreds were screened for resistance to kernel rot and aflatoxin contamination using a kernel screening assay. In all, 7 EM and 6 EEM maize inbreds were found to be highly resistant to the three foliar pathogens while 10 inbreds were resistant to the foliar pathogens and supported significantly less (P = 0.01) aflatoxin accumulation than other inbreds. Inbreds having MDR should be tested extensively in hybrid combinations and commercialized. Large-scale use of maize hybrids with MDR would (i) increase maize production and productivity and (ii) reduce losses caused by aflatoxin contamination. Overall, planting of EM and EEM maize hybrids with MDR would contribute to food security, reduced aflatoxin exposure, and increased incomes of maize farmers in SSA. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

Funder

Bill & Melinda Gates Foundation

CGIAR Research Program on Agriculture for Nutrition and Health

CGIAR Research Program on MAIZE

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3