HrpS Is a Global Regulator on Type III Secretion System (T3SS) and Non-T3SS Genes in Pseudomonas savastanoi pv. phaseolicola

Author:

Wang Jingru1,Shao Xiaolong1,Zhang Yingchao1,Zhu Yanan2,Yang Pan1,Yuan Jian1,Wang Tingting3,Yin Chunyan1,Wang Wei1,Chen Sheng4,Liang Haihua5,Deng Xin3ORCID

Affiliation:

1. Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin, 300457, China;

2. Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, U.S.A.;

3. Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Rd, Kowloon Tong, Hong Kong;

4. Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; and

5. Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an, ShaanXi 710069, China

Abstract

The type III secretion system (T3SS) is the main machinery for Pseudomonas savastanoi and other gram-negative bacteria to invade plant cells. HrpR and HrpS form a hetero-hexamer, which activates the expression of HrpL, which induces all T3SS genes by binding to a ‘hrp box’ in promoters. However, the individual molecular mechanism of HrpR or HrpS has not been fully understood. Through chromatin immunoprecipitation coupled to high-throughput DNA sequencing, we found that HrpR, HrpS, and HrpL had four, 47, and 31 targets on the genome, respectively. HrpS directly bound to the promoter regions of a group of T3SS genes and non-T3SS genes. HrpS independently regulated these genes in a hrpL deletion strain. Additionally, a HrpS-binding motif (GTGCCAAA) was identified, which was verified by electrophoretic mobility shift assay and lux-reporter assay. HrpS also regulated motility and biofilm formation in P. savastanoi. The present study strongly suggests that HrpS alone can work as a global regulator on both T3SS and non-T3SS genes in P. savastanoi. [Formula: see text] Copyright © 2018 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

Health and Medical Research Fund

Tianjin Natural Science Foundation

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3