Identification and Characterization of the Core Rice Seed Microbiome

Author:

Eyre Alexander W.12ORCID,Wang Mengying12,Oh Yeonyee12,Dean Ralph A.12

Affiliation:

1. Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC

2. Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC

Abstract

The use of microbes in agriculture for enhancing crop production is an emerging alternative to chemical fertilizers and pesticides; however, their effectiveness is often limited by factors such as host genotype and variability in geographic location. To address this issue, the microbiomes of six different rice (Oryza sativa) seeds, sourced from two locations in Arkansas, U.S.A. of two different genotypes and two harvest years, were characterized. The bacterial and fungal communities were identified in each of four seed compartments (grain, outer grain, husk, and outer husk) using high throughput Illumina MiSeq sequencing. More unique amplicon sequence variants were identified in the outer seed husk and least in the grain compartment for both the fungal and bacterial microbiomes, however this only resulted in a decrease in diversity for the fungal communities. Principal component analysis indicated that each tissue compartment harbored relatively distinct bacterial and fungal communities for the three innermost compartments. A bacterial and fungal core microbiome shared among the six seed types for each compartment was identified. Key bacterial genera in the core across all compartments were Sphingomonas, Methylobacterium, and taxa in the family Enterobacteriaceae, members of which have been reported to support rice growth. Compared with the bacterial core, more fungal taxa were identified, possibly resulting from the more abundant reads after filtering, and key genera identified were Alternaria, Hannaella, and members of the order Pleosporales. These core members represent valuable candidates for manipulating the rice microbiome, decreasing the use of chemicals while increasing plant performance.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3