Isolation of Cultivation-Resistant Oomycetes, First Detected as Amplicon Sequences, from Roots of Herbicide-Terminated Winter Rye

Author:

Bakker Matthew G.ORCID,Moorman Thomas B.,Kaspar Thomas C.1,Manter Daniel K.2

Affiliation:

1. U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), National Laboratory for Agriculture & the Environment, 1015 N. University Blvd., Ames, IA 50011

2. USDA-ARS, Soil Management and Sugarbeet Research Unit, 2150 Centre Ave., Building D, Suite 100, Fort Collins, CO 80526

Abstract

The dynamics of microbial communities associated with dying cover crops are of interest because of potential impacts on disease in a subsequent crop, and because of the importance of microbial activity on plant residue to soil organic matter dynamics and nutrient cycling. We used high throughput amplicon sequencing to characterize the composition and structure of oomycete and fungal communities associated with a rye cover crop, and to track their community dynamics in the first several weeks after herbicide was applied to terminate the cover crop. The dominant oomycetes associated with cereal rye roots were Pythium volutum, Pythium sp. F86 (an unknown species within clade B), and Lagena radicicola. Because P. volutum is sensitive to common additives in isolation media, and L. radicicola is an obligate intracellular parasite, a unique aspect of this work is to reveal the dominance of oomycete taxa that would have been missed entirely under a traditional cultivation-based approach. Based on first detection in an amplicon sequencing survey, we were able to isolate P. volutum and Pythium sp. F86. We demonstrate that both species are pathogenic on corn, and that corn seedlings grown in the field following a rye cover crop show elevated rates of infection by P. volutum, highlighting a potential disease risk associated with cover cropping. P. volutum and Pythium sp. F86 exhibited contrasting spatial patterns of abundance, with nearly complete turnover of the dominant species across the field site. In contrast to the strong spatial structuring and low diversity of oomycete communities, fungal communities associated with a cereal rye cover crop were more diverse and dynamic, with some displacement of basidiomycetes by ascomycetes over time. Several plant pathogens, as well as putative beneficial organisms, were detected among fungal communities associated with rye roots. This work sheds light on microbial community dynamics on dying host plants, highlights the power of culture-independent microbial community assessment to yield new insights, and suggests the need for informed management to reduce seedling disease risk in corn following rye cover crops.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3