Author:
Arbelet Delphine,Malfatti Pierrette,Simond-Côte Elizabeth,Fontaine Thierry,Desquilbet Loïc,Expert Dominique,Kunz Caroline,Soulié Marie-Christine
Abstract
The fungal cell wall is a dynamic structure that protects the cell from different environmental stresses suggesting that wall synthesizing enzymes are of great importance for fungal virulence. Previously, we reported the isolation and characterization of a mutant in class III chitin synthase, Bcchs3a, in the phytopathogenic fungus Botrytis cinerea. We demonstrated that virulence of this mutant is severely impaired. Here, we describe the virulence phenotype of the cell-wall mutant Bcchs3a on the model plant Arabidopsis thaliana and analyze its virulence properties, using a variety of A. thaliana mutants. We found that mutant Bcchs3a is virulent on pad2 and pad3 mutant leaves defective in camalexin. Mutant Bcchs3a was not more susceptible towards camalexin than the wild-type strain but induced phytoalexin accumulation at the infection site on Col-0 plants. Moreover, this increase in camalexin was correlated with overexpression of the PAD3 gene observed as early as 18 h postinoculation. The infection process of the mutant mycelium was always delayed by 48 h, even on pad3 plants, probably because of lack of mycelium adhesion. No loss in virulence was found when Bcchs3a conidia were used as the inoculum source. Collectively, these data led us to assign a critical role to the BcCHS3a chitin synthase isoform, both in fungal virulence and plant defense response.
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献