Visualizing Glutamine Accumulation in Root Systems Involved in the Legume–Rhizobia Symbiosis by Placement on Agar Embedded with Companion Biosensor Cells

Author:

Thilakarathna Malinda S.,Raizada Manish N.1ORCID

Affiliation:

1. Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1

Abstract

Microbial symbiotic nitrogen fixation (SNF) occurs inside root nodules, where fixed-N (NH4+) from rhizobia is first assimilated into the amino acid glutamine (Gln). Visualization of Gln dynamics in nodulated root systems of different plant species would require re-engineering transgenic Gln reporters specific for each rhizobia/host genotype. Here we demonstrate the use of companion biosensor cells called GlnLux (Escherichia coli auxotrophic for Gln and constitutively expressing lux) to image Gln accumulation in nodulated root systems across a diversity of legume/rhizobia species. Companion GlnLux cells are embedded into agar (GlnLux agar) upon which legume root systems are placed following freeze-thawing to cause Gln leakage. Photons released from nearby activated biosensor cells are captured using a photon capture camera. Using split root systems, we demonstrate that in diverse amide-exporting legumes (alfalfa, lentil, and green pea) and a ureide-exporting legume (soybean) that GlnLux agar imaging is sufficiently sensitive to detect Gln release from individual nodules and can differentiate root systems with active nif+ from inactive nif− nodules. The assay permits visualization of both source and sink dynamics of nodule Gln, specifically, Gln import into nodules from roots (for nodule growth and/or amino acid cycling), Gln assimilated from fixed nitrogen that accumulates inside nodules, and Gln export from nodules into roots from this assimilatory-N. GlnLux agar-based imaging is thus a new research tool to localize the accumulation and transfer of a critical amino acid required for rhizobia symbionts within legume phytobiomes. We discuss the ability of this technology to open new frontiers in basic research and its limitations.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3