Composition of the microbiomes from spinach seeds infested or non-infested with Peronospora effusa or Verticillium dahliae

Author:

Kandel Shyam L1,Henry Peter Montgomery2,Goldman Polly H.3,Mou Beiquan4,Klosterman Steven J5

Affiliation:

1. USDA ARS, 17123, 1636 E. Alisal St. , Salinas, California, United States;

2. University of California at Davis, Plant Pathology, 1 Shields Ave., Davis, California, United States, 95616;

3. USDA-ARS, 1636 E. Alisal St. , Salinas , California, United States, ;

4. USDA-ARS, 1636 E. Alisal St. , Salinas, California, United States, ;

5. USDA-ARS, 1636. E. Alisal St. , Salinas , California, United States, ;

Abstract

The worldwide distribution of plant seeds can disseminate beneficial and plant pathogenic microorganisms. This phenomenon is of particular concern where seed production is geographically isolated from crop production, as is the case with spinach in the United States. We aimed to characterize the structure and function of spinach seed microbiomes in commercial spinach seed lots originating from Europe and New Zealand. The seed lots we analyzed were infested with Peronospora effusa and Verticillium dahliae, only infested with V. dahliae, or not infested with either of these pathogens. The microbial taxonomic composition and gene function (assessed by Gene Ontology (GO) terms) of spinach seeds were highly influenced by geographic origin and the status of pathogen infestation. Through taxonomic profiling, we found that potentially plant beneficial bacterial genera such as Pseudomonas and Pantoea were the most abundant taxa both in infested and non-infested seeds, and Stenotrophomonas was observed in seed lots infested with P. effusa and V. dahliae. Many potential plant pathogens that are not known to be associated with spinach seed were also discovered by metagenomic analysis, including Sclerotinia sclerotiorum, Botrytis cinerea, Bipolaris sorokiniana, Fusarium pseudograminearum, Alternaria brassicae, Parastagonospora nodorum, and Pyrenophora teres f. teres. Our analysis of the function of prokaryotic genes in de novo assembled metagenomes revealed distinct GO terms associated with the geographic origin of seed lots. This work provides an important first step toward identifying spinach seed-borne microorganisms that could be utilized to improve plant health and plant pathogens that could be inadvertently carried to new locations.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3