A Streptomyces Consortium Contributes Distinct Microbial Interactions During Arabidopsis thaliana Microbiome Assembly

Author:

Gates Alexandra D.12,French Austin M.1,Demetros Alexander A.23,Kelley Brittni R.2,Lebeis Sarah L.234ORCID

Affiliation:

1. Department of Microbiology, University of Tennessee, Knoxville, TN

2. Plant Resilience Institute, Michigan State University, East Lansing, MI

3. Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI

4. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI

Abstract

Although plant microbiome assembly involves a series of both plant–microbe and microbe–microbe interactions, the latter is less often directly tested. Here, we investigate a role for Streptomyces strains to influence assembly of other bacteria into root microbiomes through the use of two synthetic communities (SynComs): a 21-member community including four Streptomyces strains and a 17-member community lacking those Streptomyces strains. Following inoculation with these SynComs on wild-type Arabidopsis thaliana Col-0, differential abundance modeling on root endosphere 16S ribosomal RNA gene amplicon sequencing data revealed altered abundance of four diverse SynCom members: Arthrobacter sp. 131, Agrobacterium sp. 33, Burkholderia sp. CL11, and Ralstonia sp. CL21. Modeling results were tested by seedling coinoculation experiments with the four Streptomyces strains and differentially abundant members, which confirmed the predicted decreased abundance for Arthrobacter sp. 131, Agrobacterium sp. 33, and Ralstonia sp. CL21 when Streptomyces strains were present. We further characterized how the phytohormone salicylic acid (SA) mediates Streptomyces strains’ influence over Agrobacterium sp. 33 and Burkholderia sp. CL11 seedling colonization. Although decreased colonization of Ralstonia sp. CL21 and Arthrobacter sp. 131 when Streptomyces spp. are present were not influenced by SA, direct antibiosis of Arthrobacter sp. 131 by Streptomyces was observed. These results highlight a role for Streptomyces-mediated microbial interactions during plant root microbiome assembly as well as distinct mechanisms that mediate them. Understanding the role of microbial interactions during microbiome assembly will inform the production of beneficial microbial treatments for use in agricultural fields.

Funder

Directorate for Biological Sciences

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3