Canker Disease Intensifies Cross-Kingdom Microbial Interactions in the Endophytic Microbiota of Citrus Phyllosphere

Author:

Huang Feng1ORCID,Ling Jinfeng1,Zhu Congyi2,Cheng Baoping1,Song Xiaobing1,Peng Aitian1

Affiliation:

1. Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China

2. Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA) & Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

Abstract

Plant disease is an important factor that affects the plant microbiome. However, for many plant–pathogen–microbiome interactions, the influences are unknown. Citrus, comprising abundant varieties of mandarin, sweet orange, pomelo, and lemon, is widely cultivated in different production areas in China. Most of these varieties are vulnerable to citrus canker, which is caused by Xanthomonas spp. In this study, asymptomatic and cankered leaves from asymptomatic and canker-infected trees, respectively, were collected from 17 orchards in six citrus production areas and their endophytic microbiomes were compared. The effects of canker on the microbial community richness and diversity were dependent on whether the interaction type was intrakingdom (for bacteria, positive) and interkingdom (for fungi, negative), respectively. The negative effects of canker on the fungal communities might be affected by the strong correlation between Xanthomonas and Fusarium/ Gibberella species. The occurrence of canker significantly affected the composition and structure of both the endophytic fungal and bacterial communities, and altered the dominant genera of each community. In addition, canker occurrence intensified the cross-kingdom microbial interaction network, in which species of Enterobacter, Xanthomonas, Pseudomonas, and Pantoea were detected with increased roles in the network and responsible for the predominant functional genes involved in nutritional metabolism, the bacterial secretion system, and biotin metabolism. The results provide insights into the responses of the endophytic microbiome to citrus canker disease.

Funder

Project of Collaborative Innovation Center of GDAAS

National Natural Science Foundation of China

China Scholarship Council

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3