Quantitative Genetics of the Maize Leaf Microbiome

Author:

Wallace Jason G.12ORCID,Kremling Karl A.3,Kovar Lynsey L.2,Buckler Edward S.45

Affiliation:

1. Department of Crop & Soil Sciences, University of Georgia, Athens, GA;

2. Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA;

3. Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY;

4. U.S. Department of Agriculture–Agricultural Research Service, Ithaca, NY; and

5. Institute for Genomic Diversity, Cornell University, Ithaca, NY

Abstract

The degree to which the genotype of an organism can affect the composition of its associated microbial communities (“microbiome”) varies by organism and habitat, and in many cases is unknown. We analyzed the metabolically active bacteria of maize leaves across 300 diverse maize lines growing in a common environment. We performed comprehensive heritability analysis for 49 community diversity metrics, 380 bacterial clades, and 9,042 predicted metagenomic functions. We find that only a few bacterial clades (5) and diversity metrics (2) are significantly heritable, while a much larger number of metabolic functions (200) are. Many of these associations appear to be driven by the Methylobacteria in each sample. Among these heritable metabolic traits, Fisher’s exact test identifies significant overrepresentation of traits relating to short-chain carbon metabolism, secretion, and nitrotoluene degradation. Genome-wide association analysis identified a small number of associated loci for these heritable traits, including two that affect multiple traits. Our results indicate that while most of the maize leaf microbiome composition is driven by environmental factors and/or stochastic founder events, a subset of bacterial taxa and metabolic functions is nonetheless significantly impacted by host genetics. Additional work will be needed to identify the exact nature of these interactions and what effects they may have on their host. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3