Affiliation:
1. Department of Plant Pathology and Environmental Microbiology, Fruit Research and Extension Center, The Pennsylvania State University, Biglerville, PA 17307
2. Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802
Abstract
Bitter rot is a disease of apple caused by fungi in the genus Colletotrichum. Management begins with removal of infected twigs and fruit from tree canopies to reduce overwintering inoculum. Infected apple fruit are usually tossed to the orchard floor, which is generally managed as herbicide-treated weed-free tree rows, separated by grass drive rows. We monitored decay rates and succession of fungi of apple fruit with bitter rot in tree canopies, and on the soil surface in tree rows, grass drive rows, and nearby diverse plant communities. We hypothesized that decay would occur most rapidly within diverse plant communities, which would provide a more diverse array of potential fungal decomposers. Apple fruit in tree canopies became dry and mummified and had more Colletotrichum gene marker copies the following growing season than did fruit on the soil surface. Of the soil-surface samples, those in grass drive rows and diverse plant communities had higher moisture, faster decay rates, and sharper decreases in Colletotrichum gene marker copies than apple fruit in tree rows. Fungal composition across all decaying apple fruit was dominated by yeasts, with higher genus-level richness, diversity, and evenness in fruit from tree canopies than those on the soil surface. In soil-surface apple fruit, we observed clear successional waves of Pichia, Kregervanrija, and [Candida] yeasts, with similar but distinctly diverging fungal composition. Our results show that orchard floor management can influence fungal succession in apple fruit with bitter rot but suggests that bitter rot management should primarily focus on removing infected apple fruit from tree canopies.
Funder
National Institute of Food and Agriculture
Northeast Sustainable Agriculture Research and Education
National Science Foundation
Subject
Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献