Neonicotinoid Seed Treatments Influence Soil Nematode Taxonomic Composition and the Soil Microbial Cooccurrence Networks

Author:

Parizadeh Mona12ORCID,Kembel Steven W.1ORCID,Mimee Benjamin2ORCID

Affiliation:

1. Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, Québec, H2X 1Y4, Canada

2. Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, Québec, J3B 3E6, Canada

Abstract

Neonicotinoid insecticides are widely used to control early-season and foliar-feeding pests. Some studies have revealed their nontarget impacts on pollinators and other invertebrates but few investigated their effects on soil microbiota. Given the crucial role of soil prokaryotic and eukaryotic microbial communities in agroecosystem regulation and their contribution to soil fertility, it is critical to understand their structure and changes in response to disturbances such as pesticide application. Among these communities, free-living nematodes have the potential to indicate the ecological changes in soil caused by environmental stress and have a key role in forming and modulating soil microbial composition and function by feeding on other soil microorganisms or interacting with them. Here, we used 18S ribosomal RNA gene amplicon sequencing to characterize the effects of neonicotinoids on soil nematode communities in a 3-year soybean-corn crop rotation in Quebec, Canada. We also quantified the changes in nematode-bacteria cooccurrence networks in soil exposed to neonicotinoids. We found that neonicotinoid seed treatment significantly explained variation in nematode community composition and affected the relative abundance of some nematode families, such as a decrease in the omnivorous family Dorylaimidae in neonicotinoid-treated samples. Moreover, neonicotinoids altered the patterns of nematode-bacteria cooccurrence, including the structure and taxonomic composition of the networks. However, it is unclear whether neonicotinoids affected bacterial cooccurrence networks directly, or indirectly by affecting nematodes that feed on bacteria. Further research is needed to understand how neonicotinoids affect nematodes and the role of nematodes in microbial network variation in soil exposed to neonicotinoids.

Funder

Agriculture and Agri-Food Canada

Natural Sciences and Engineering Research Council of Canada

Canada Research Chair

Compute Canada

Calcul Quebec

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3