Soybean Microbiome Recovery After Disruption is Modulated by the Seed and Not the Soil Microbiome

Author:

Moroenyane Itumeleng1ORCID,Tremblay Julien2,Yergeau Étienne1

Affiliation:

1. Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, Québec, H7V1B7, Canada

2. Energy, Mining, and Environment, Natural Research Council Canada, 6100 Avenue RoyalMount, Montreal, Quebec, H4P 2R2, Canada

Abstract

Endophytic microbiomes of healthy seed form a symbiotic relationship with their host. Seed and environment are sources of microbes that colonize the developing plant; however, the influence of each remains unclear. Here, using irradiation combined with surface sterilization to generate near-axenic seed with disrupted and reduced microbiomes, we contrasted the colonization potential of seed and soil microbiomes. We hypothesized that the seed microbiome would be the primary colonizer of the plant endophytic compartments. Our experimental design comprised four treatments, using soybean as a model plant: (i) nearly axenic seed growing in a sterile environment, (ii) nonaxenic seed inoculated with a microbial soil extract, (iii) nearly axenic seed inoculated with a microbial seed extract, and (iv) nearly axenic seed inoculated with a microbial soil extract. After 14 days of growth, plants were harvested, and DNA was extracted from the shoot, roots, and rhizosphere and subjected to 16S ribosomal RNA gene amplicon sequencing, quantitative PCR quantification of the total community, and functional genes involved in the N cycle. Community dynamics were similar for most treatments within their respective compartments, except for the soil treatment, where rhizosphere and root microbiomes differed from other treatments, suggesting that the soil microbiome colonizes the belowground compartment efficiently only when the seed microbiome is severely disrupted. For the shoot, all treatments resembled the seed microbiome treatment, suggesting that the seedborne bacteria colonize the aboveground compartment preferentially. Our results highlight the primacy of the seed microbiome over the soils during early colonization, putting seed microbes as potential candidates of microbiome engineering efforts.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3