A Biosensor-Based Assay (GlnLux-Agar) Shows Defoliation Triggers Rapid Release of Glutamine from Nodules and Young Roots of Forage Legumes

Author:

Thilakarathna Malinda S.1,Raizada Manish N.1ORCID

Affiliation:

1. Department of Plant Agriculture, University of Guelph, 50 Stone Road, Guelph, ON, Canada N1G 2W1

Abstract

Forage legumes experience defoliation from grazing and injury in both natural and agricultural ecosystems. Defoliation induces rhizodeposition of nitrogen (N) compounds from root systems that can feed microbes and plants that depend on the rhizosphere. The literature suggests that N exudates are primarily released from root tips, and those from legume nodules are released via slow nodule decomposition. However, the early timing and precise locations of N release postdefoliation are poorly characterized. The objectives of this study were to directly image tissue-specific N exudation sites in forage legumes, specifically for glutamine, and to do so at early time points postdefoliation. Glutamine is the primary assimilate of symbiotic nitrogen fixation in nodules and a key transport form of fixed N in amide-exporting legumes. Three amide-exporting forages, alfalfa (Medicago sativa), red clover (Trifolium pretense), and white clover (Trifolium repens), were defoliated or not, and placed on agar embedded with whole cell biosensor cells (GlnLux) that detect glutamine. There were two unexpected findings. First, Gln release occurred rapidly, starting within 2 h postdefoliation, depleting rapidly. Second, the sources of early Gln release were primarily nodules in addition to the expected young lateral roots/root tips. Lux quantification statistically confirmed the key findings. These observations suggest that N exudate release should be added to the list of defoliation stress early responses in nodules, and may have implications for our understanding of how defoliation impacts the rhizosphere microbiome. Furthermore, GlnLux-agar imaging represents a new assay to explore the proposed but yet unknown mechanisms underlying organic N exudation in plants.

Funder

International Development Research Centre

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3