Chronic Drought Differentially Alters the Belowground Microbiome of Drought-Tolerant and Drought-Susceptible Genotypes of Populus trichocarpa

Author:

Kristy Brandon12ORCID,Carrell Alyssa A.1,Johnston Eric1,Cumming Jonathan R.3,Klingeman Dawn M.1,Gwinn Kimberly2ORCID,Syring Kimberly C.4,Skalla Caroline5,Emrich Scott2,Cregger Melissa A.1ORCID

Affiliation:

1. Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

2. Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996

3. Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853

4. Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333

5. Department of Computer Science, Kalamazoo College, Kalamazoo, MI 49006

Abstract

Populus trichocarpa is an ecologically important tree species and economically important biofeedstock. Belowground, P. trichocarpa interacts with diverse microorganisms in the rhizosphere and root endosphere. These plant–microbe interactions can bolster a variety of plant processes, ranging from pathogen suppression to drought tolerance, yet we know little about the impact of chronic drought stress on P. trichocarpa’s belowground microbiomes. To investigate the interactive effect of chronic drought on belowground microbial communities across genetically different P. trichocarpa hosts, we assessed archaeal/bacterial and fungal communities within the root endosphere, rhizosphere, and surrounding bulk soil of selected genotypes in a long-term drought experiment in Boardman, OR, U.S.A. We sequenced the 16S ribosomal RNA and internal transcribed spacer 2 gene region on samples collected from 16 distinct P. trichocarpa genotypes in plots with full or reduced irrigation. Eight of these genotypes have been previously identified as drought tolerant while the other eight genotypes were drought susceptible. Although reduced irrigation influenced the composition of every archaeal or bacterial microbiome compartment, fungal communities were only affected in the rhizosphere and bulk soil compartments. Drought-tolerant bacteria such as Actinobacteria were differentially abundant in reduced irrigation across all belowground microbiomes. Host drought tolerance influenced plant-associated microbiome compartments but had little impact on the bulk soil compartment. Drought-tolerant trees were enriched for potential growth-promoting microorganisms in the root endosphere and rhizosphere, including Sphingomonas bacteria and ectomycorrhizal fungi. Overall, associations of growth-promoting microbes in drought-resistant P. trichocarpa genotypes can be leveraged to improve biofeedstock productivity in regions prone to periodic drought.

Funder

U.S. Department of Energy

U.S. Department of Agriculture National Institute of Food and Agriculture

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3