Comparative Analysis of the Rhizosphere and Endophytic Microbiomes across Apple Rootstock Genotypes in Replant Orchard Soils

Author:

Van Horn Christopher1,Somera Tracey S.1,Mazzola Mark12

Affiliation:

1. United States Department of Agriculture–Agricultural Research Service, Tree Fruit Research Laboratory, Wenatchee, WA 98801, U.S.A.

2. Department of Plant Pathology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa

Abstract

Apple replant disease (ARD), caused by a complex of soilborne pathogens, negatively impacts tree health and productivity in new orchard plantings at sites previously planted to apple. Use of new disease-tolerant apple rootstock genotypes may diminish growth-limiting effects of ARD; however, the influence of rootstock genotype on modulating the rhizosphere and endophytic microbiome to enable ARD tolerance is not fully understood. Composition of the rhizosphere and root endophytic microbiomes was characterized across a diversity of apple rootstock genotypes. A series of tolerant (G.210, G.41, G.890, and G.935) and susceptible (M.26 and M.9) rootstock cultivars were consecutively planted into orchard replant soil containing a known pathogen complex. Amplicon sequencing was used to determine simultaneously the presence of a broad taxonomic range of organisms and their relative abundance. Microbial communities exhibited significant differences in composition between the rhizosphere and endophytic environments in terms of species diversity, content, and abundance. Significant differences in composition of the endophytic and rhizosphere microbiomes were observed between rootstock genotypes. Among rootstock endophytic fungal communities, rootstock G.890 samples consistently harbored the highest percentage of arbuscular mycorrhizal fungal species (>5% of total). Ilyonectria spp., which may function as a pathogen of apple, were detected at high relative abundance in the endosphere of all genotypes, with the highest relative abundance in M.26. These results provide further insight into rhizosphere and endophytic microbial communities of apple rootstocks, which could be exploited or manipulated to improve tree fruit agricultural management practices with respect to plant nutrition and disease control.

Funder

National Institute of Food and Agriculture

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3