Diversity of Phytophthora, Pythium, and Phytopythium Species in Recycled Irrigation Water in a Container Nursery

Author:

Redekar Neelam R.1ORCID,Eberhart Joyce L.1,Parke Jennifer L.12

Affiliation:

1. Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331; and

2. Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331

Abstract

Recycling of irrigation water increases disease risks due to spread of waterborne oomycete plant pathogens such as Phytophthora, Pythium, and Phytopythium. A comprehensive metabarcoding study was conducted to determine spatial and temporal dynamics of oomycete communities present in irrigation water collected from a creek (main water source), a pond, retention reservoirs, a chlorinated water reservoir, and runoff channels within a commercial container nursery in Oregon over the course of 1 year. Two methods, filtration and leaf baiting, were compared for the detection of oomycete communities. Oomycete communities in recycled irrigation water were less diverse but highly enriched with biologically active plant pathogens as compared with the creek water. The filtration method captured a larger portion of oomycete diversity, while leaf baiting was more selective for plant-associated oomycete species of Phytophthora and a few Pythium and Phytopythium species. Seasonality strongly influenced oomycete diversity in irrigation water and detection with leaf baiting. Phytophthora was the major colonizer of leaf baits in winter, while all three genera were equally abundant on leaf baits in summer. The metabarcoding approach was highly effective in studying oomycete ecology, however, it failed to distinguish some closely related species. We developed a custom oomycete internal transcribed spacer (ITS)1 reference database containing shorter sequences flanked by ITS6 and ITS7 primers used in metabarcoding and used it to assemble a list of indistinguishable species complexes and clusters to improve identification. The predominant bait-colonizing species detected in recycled irrigation water were the Phytophthora citricola-complex, Phytophthora syringae, Phytophthora parsiana-cluster, Phytophthora chlamydospora, Phytophthora gonapodyides, Phytophthora irrigata, Phytophthora taxon Oaksoil-cluster, Phytophthora citrophthora-cluster, Phytophthora megasperma-cluster, Pythium chondricola-complex, Pythium dissotocum-cluster, and Phytopythium litorale.

Funder

U.S. Department of Agriculture NIFA Specialty Crop Research Initiative (SCRI) program

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science,Molecular Biology,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3