Affiliation:
1. Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606-7825
2. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
Abstract
Since its reemergence in 2004, Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew (CDM), has experienced significant changes in fungicide sensitivity. Presently, frequent fungicide applications are required to control the disease in cucumber due to the loss of host resistance. Carboxylic acid amides (CAA) and quinone outside inhibitors (QoI) are two fungicide groups used to control foliar diseases in cucurbits, including CDM. Resistance to these fungicides is associated with single nucleotide polymorphism (SNP) mutations. In this study, we used population analyses to determine the occurrence of fungicide resistance mutations to CAA and QoI fungicides in host-adapted clade 1 and clade 2 P. cubensis isolates. Our results revealed that CAA-resistant genotypes occurred more prominently in clade 2 isolates, with more sensitive genotypes observed in clade 1 isolates, while QoI resistance was widespread across isolates from both clades. We also determined that wild cucurbits can serve as reservoirs for P. cubensis isolates containing fungicide resistance alleles. Finally, we report that the G1105W substitution associated with CAA resistance was more prominent within clade 2 P. cubensis isolates while the G1105V resistance substitution and sensitivity genotypes were more prominent in clade 1 isolates. Our findings of clade-specific occurrence of fungicide resistance mutations highlight the importance of understanding the population dynamics of P. cubensis clades by crop and region to design effective fungicide programs and establish accurate baseline sensitivity to active ingredients in P. cubensis populations.
Funder
Pickle Packers International
U.S. Department of Agriculture−Agriculture and Food Research Initiative (AFRI) Food Security
U.S. Department of Agriculture−National Institute of Food and Agriculture
U.S. Department of Agriculture−Animal and Plant Health Inspection Service
Michigan Hatch
NC State Hatch
Subject
Plant Science,Agronomy and Crop Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献