Tsn1-Mediated Host Responses to ToxA from Pyrenophora tritici-repentis

Author:

Adhikari Tika B.,Bai Jianfa,Meinhardt Steven W.,Gurung Suraj,Myrfield Mary,Patel Jaimin,Ali Shaukat,Gudmestad Neil C.,Rasmussen Jack B.

Abstract

The toxin sensitivity gene Tsn1 interacts with Ptr ToxA (ToxA), a host-selective toxin produced by the necrotrophic fungus Pyrenophora tritici-repentis. The molecular mechanisms associated with cell death in sensitive wheat cultivars following ToxA application are not well understood. To address this question, we used the Affymetrix GeneChip Wheat Genome Array to compare gene expression in a sensitive wheat cultivar possessing the Tsn1 gene with the insensitive wheat cv. Nec103, which lacks the Tsn1 gene. This analysis was performed at early timepoints after infiltration with ToxA (e.g., 0.5 to 12 h postinfiltration [hpi]); at this time, ToxA is known to internalize into mesophyll cells without visible cell death symptoms. Gene expression also was monitored at later timepoints (24 to 48 hpi), when ToxA causes extensive damage in cellular compartments and visible cell death. At both early and late timepoints, numerous defense-related genes were induced (2- to 197-fold increases) and included genes involved in the phenylpropanoid pathway, lignification, and the production of reactive oxygen species (ROS). Furthermore, a subset of host genes functioning in signal transduction, metabolism, and as transcription factors was induced as a consequence of the Tsn1–ToxA interaction. Nine genes known to be involved in the host defense response and signaling pathways were selected for analysis by quantitative real-time polymerase chain reaction, and the expression profiles of these genes confirmed the results obtained in microarray experiments. Histochemical analyses of a sensitive wheat cultivar showed that H2O2 was present in leaves undergoing cell death, indicating that ROS signaling is a major event involved in ToxA-mediated cell death. The results suggest that recognition of ToxA via Tsn1 triggers transcriptional reprogramming events similar to those reported for avirulence–resistance gene interactions, and that host-derived genes play an important role in the modulation of susceptibility to P. tritici-repentis.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3