A New Disease of Agrostis palustris Incited by an Undescribed Species of Ophiosphaerella

Author:

Dernoeden P. H.1,O'Neill N. R.2,Câmara M. P. S.3,Feng Y.1

Affiliation:

1. Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park 20742

2. USDA, ARS, Beltsville, MD 20705

3. Department of Plant Pathology, Pennsylvania State University, University Park 16802

Abstract

Creeping bentgrass (Agrostis palustris; syn. Agrostis stolonifera) is widely used on golf course putting greens. In September and October 1998, samples of diseased creeping bentgrass were received from golf courses in Maryland, Virginia, and Ohio. Disease symptoms developed in August or September 1998, and appeared initially as 1.0- to 2.0-cm-diameter, reddish brown spots that enlarged to about 8.0 cm in diameter. Leaves of plants in the center of diseased patches were tan and those on the periphery were reddish brown. Dark, ectotrophic hyphae were not observed on roots. Numerous pseudothecia were embedded in necrotic leaf and stolon tissues. A fungus was isolated from leaves, stems, and roots, and single-spore isolates were obtained from pseudothecia. Colonies of all isolates were identical in appearance and were initially rose-quartz to pinkish brown, developing a gray color as they aged. Inoculum was prepared by placing mycelium from a single-spore isolate on an autoclaved medium consisting of 50% tall fescue (Festuca arundinacea) seed, and 50% wheat (Triticum aestivum) bran (vol/vol) and grown at 28°C for 8 days. Putter and Crenshaw creeping bentgrass seedlings were grown for 14 days in 12 cm2 pots containing an autoclaved topdressing mix with a mechanical analysis of 95% sand, 1% silt, and 4% clay. The inoculum (200 mg) was mixed into the upper 5 mm of the sandy soil. Pots were placed in plastic bags and incubated during the daytime on a windowsill bench (20 to 24°C), and were maintained at 25°C at night in a darkened growth chamber. After 7 days, 2.0-cm-diameter patches of blighted leaves were observed on both cultivars in nearly all pots, and pseudothecia were found on the inoculum or on blighted foliage in some pots after 20 days. Blighted leaves were covered with a pale pinkish white mycelium and newly infected leaves at the periphery of the dead spot were a pale reddish brown. Most plants were dead 20 days after inoculation. The fungus was reisolated from blighted leaves of both cultivars and all isolates produced colonies identical in appearance and growth rate to those produced by the single-spore isolate. Pseudothecia produced in vivo were sectioned with a freezing microtome and examined microscopically. Bitunicate asci were observed and contained light-brown, 6- to 15-septate, filiform ascospores that were usually spirally twisted in the ascus and measured 70 to 150 × 2.0 to 2.5 μm. Characteristics of the pseudothecia and the ascospores fit those of the genus Ophiosphaerella Speg. (1). Based on morphometric studies of 12 collections from three different states, this fungus can be distinguished from O. graminicola by the lack of periphyses and fewer septa in ascospores (i.e., 12 to 20 septa in O. graminicola). It was distinguished from O. herpotricha by characteristics of the pseudothecia neck, ascospores, and colony color. Because of these differences, we suggest that this fungus represents a new species attacking creeping bentgrass, which will be described after further morphometric and molecular analyses. Reference: (1) J. Walker. Mycotaxon 11:1, 1980.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Turfgrass Pathology since 1990;AGRON MONOGR;2013

2. Agrostis;Wild Crop Relatives: Genomic and Breeding Resources;2010-09-06

3. A Review of Dead Spot on Creeping Bentgrass and a Road Map for Future Research;Handbook of Turfgrass Management and Physiology;2007-10-09

4. A Review of Dead Spot on Creeping Bentgrass and a Road Map for Future Research;Handbook of Turfgrass Management and Physiology;2007-10-09

5. Dead Spot of Creeping Bentgrass and Hybrid Bermudagrass;Applied Turfgrass Science;2005-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3