Inheritance of Resistance to Race 0 of Phytophthora parasitica var. nicotianae from the Flue-Cured Tobacco Cultivar Coker 371-Gold

Author:

Carlson Shawn R.1,Wolff Mary Anne F.1,Shew H. D.2,Wernsman E. A.3

Affiliation:

1. Department of Crop Science

2. Department Plant Pathology

3. Department of Crop Science, North Carolina State University, Raleigh 27695-7620

Abstract

Black shank, caused by Phytophthora parasitica var. nicotianae, is a widespread and severe disease of tobacco throughout the southeastern United States. Partial resistance derived from the cigar tobacco cultivar Florida 301 has been the primary means of reducing losses to the disease for many years. The recently released tobacco cultivar, Coker 371-Gold (C 371-G), was found to provide an additional source of resistance to P. parasitica var. nicotianae. Although the resistance in C 371-G is being used widely by breeders, the origin and inheritance of this resistance mechanism was unknown. Two populations of doubled haploid lines derived from C 371-G were used to determine that C 371-G possesses a single, dominant gene designated Ph, which confers a very high level of resistance to race 0 of P. parasitica var. nicotianae. A greenhouse inoculation procedure was developed that provided an efficient means of screening for the presence of this resistance gene prior to selection in the field, and confirmed that Ph provides complete resistance to race 0 but no resistance to race 1 of P. parasitica var. nicotianae. Because Florida 301 resistance is effective against both races of the pathogen that occur in the major tobacco growing areas of the United States, combination of these two sources of resistance should provide enhanced protection of new tobacco cultivars to P. parasitica var. nicotianae.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3