First Report of Tomato Mottle Geminivirus Infecting Tomatoes in Yucatan, Mexico

Author:

Garrido-Ramirez E. R.1,Gilbertson R. L.1

Affiliation:

1. Department of Plant Pathology, University of California, Davis 95616

Abstract

Whitefly-transmitted geminiviruses are a major constraint on tomato production in Mexico (3). In the Yucatan State, these viruses can cause serious losses in late season plantings. As part of an effort to characterize these viruses, leaf samples from four tomato plants showing symptoms of geminivirus infection, such as stunted growth and leaf mottling and deformation, were collected from a single field in the Yucatan State in February, 1996. Geminivirus nucleic acids were detected in leaf samples from all four plants by squash blot hybridization analysis with a general DNA probe for Western Hemisphere whitefly-transmitted geminiviruses (2). Nicotiana benthamiana plants inoculated with sap prepared with leaf tissue from one plant developed stunted growth and leaf mottling and deformation. When graft-transmitted from N. benthamiana to tomato, the geminivirus(es) induced leaf mottling and deformation, which were similar to symptoms in the field-collected tomato plants. The presence of geminivirus DNA in the sap- and graft-inoculated plants was confirmed with the polymerase chain reaction (PCR) and degenerate primers for the DNA-A (PAL1v1978 and PAR1c496) or DNA-B (PBL1v2040 and PCRc1) components of whitefly-transmitted geminiviruses (4). Using PCR and these degenerate primers, approximately 1.1-kb DNA-A and approximately 0.6-kb DNA-B fragments were amplified from DNA extracts prepared from leaves of each of the four Yucatan tomato plants. No DNA fragments were amplified from these extracts with primers for pepper huasteco geminivirus (pAL1c2329 and pAL1v1471, or pBR1c840 and pBL1v1830). To determine the identity of the geminivirus(es) infecting these tomato plants, the PCR-amplified DNA-A and DNA-B fragments from one of the samples were cloned and sequenced. Comparisons made with these sequences revealed two distinct types of DNA-A and DNA-B clones, indicating a mixed infection of at least two bipartite geminiviruses. DNA-A and DNA-B sequences of one set of clones were >97% identical to sequences of tomato mottle geminivirus (ToMoV) from Florida (1). The presence of ToMoV in all four tomato leaf samples was demonstrated by the PCR-mediated amplification of a 0.9-kb DNA-A fragment with ToMoV-specific primers (pAL1v2295 and pAR1c580). The identity of this 0.9-kb DNA fragment was further confirmed based upon its hybridization with a full-length clone of ToMoV DNA-A under high stringency conditions (2). A data base search made with the sequence of the other type of DNA-A clone revealed sequence identities of <70% with various bipartite geminiviruses (e.g., identities of 70% with tomato mottle, 69% with Sida golden mosaic, 67% with bean dwarf mosaic, and 66% with taino tomato mottle and with potato yellow mosaic), which confirmed that a second geminivirus was present in a mixed infection with ToMoV in this tomato leaf sample. To confirm the bipartite nature of this geminivirus, a DNA-B fragment that contained the common region (CR) sequence was amplified from the same sample with PCR and primers PBL1v2040 and PBR1c970 (a degenerate primer that anneals within the BV1 open reading frame; F. M. Zerbini and R. L. Gil-bertson, unpublished data), cloned, and sequenced. The CR sequence of this DNA-B fragment was 96% identical to that of the DNA-A fragment, which establishes the presence of another bipartite geminivirus in this sample. This is the first report of ToMoV in Mexico. These results also suggest that at least two bipartite geminiviruses may infect tomatoes in the Yucatan Peninsula. References: (1) A. M. Abouzid et al. J. Gen. Virol. 73:3225, 1992. (2) R. L. Gilbertson et al. Plant Dis. 75:336, 1991. (3) J. E. Polston and P. K. Anderson. Plant Dis. 81:1358, 1997. (4) M. R. Rojas et al. Plant Dis. 77:340, 1993.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3