Spatial and Temporal Patterns of Aspergillus flavus Strain Composition and Propagule Density in Yuma County, Arizona, Soils

Author:

Orum Thomas V.1,Bigelow Donna M.1,Nelson Merritt R.1,Howell Donald R.2,Cotty Peter J.3

Affiliation:

1. Department of Plant Pathology, University of Arizona, Tucson 85721

2. Cooperative Extension Service, University of Arizona, Yuma 85364

3. Southern Regional Research Center, USDA, ARS, New Orleans, LA 70179

Abstract

Aspergillus flavus isolates from Arizona can be divided into S and L strains on the basis of sclerotial morphology. These genetically distinct strains differ in aflatoxin production. To help understand factors influencing the aflatoxin producing potential of A. flavus communities, spatial and temporal patterns of strain incidence were compared with patterns of A. flavus propagule density in Yuma County soils. Strain S isolates were found in all sampled fields, but the percentage of strain S isolates ranged from 4 to 93%. A nested analysis of variance was used to determine the spatial scale at which most variability in strain composition and propagule density occurred. For both variables, the largest component of variance occurred among fields within areas at a spatial scale of 1 to 5 km. There was also spatial structure (12 to 21% of the variance) at the subregional level (> 20 km) in strain composition, but not in propagule density. Temporal patterns for both variables were similar. The sampling periods with the highest incidence of strain S isolates, August 1994 (60%) and July 1995 (62%), occurred during cotton boll formation. The regional average for A. flavus propagule density was near 1000 propagules/g in the summer, but less than 100 propagules/g in the spring. The results suggest that insights into factors influencing the toxigenicity and propagule density of A. flavus communities might be achieved most readily by contrasting fields in close spatial proximity.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3