Inhibition of Aphanomyces euteiches f. sp. pisi by Volatiles Produced by Hydrolysis of Brassica napus Seed Meal

Author:

Smolinska Urszula1,Knudsen G. R.2,Morra M. J.2,Borek V.3

Affiliation:

1. Visiting Scientist

2. Associate Professor

3. Postdoctoral Research Associate, Soil Science Division, University of Idaho, Moscow 83844-2339

Abstract

Seed meal from Brassica napus (rapeseed) produced volatile fungitoxic compounds potentially of value in the control of Aphanomyces root rot of pea. Hyphal growth, germination of encysted zoospores, and oospore survival and inoculum potential, were determined in the presence of volatiles produced from B. napus seed meal. Volatile compounds from B. napus meal completely suppressed mycelial growth and germination of encysted zoospores on agar. In growth chamber bioassays, pea (Pisum sativum) seed inoculated with zoospore suspensions and incubated 24 h in the presence of volatiles from rapeseed meal had 50% lower root rot disease severity than in the absence of meal. Volatile compounds passing through soil also significantly decreased survival and inoculum potential of oospores. Gas chromatographic analysis of rapeseed tissues and the volatile compounds evolved from tissues showed that substrate glucosinolates were hydrolyzed enzymatically to produce mainly isothiocyanates. Non-autoclaved rapeseed meal produced significantly higher levels of volatile compounds than did autoclaved meal. Also, volatile compounds produced from autoclaved meal were dominated by nitriles, whereas isothiocyanates were more common volatile products from non-autoclaved meal. Our results indicate that B. napus allelochemicals responsible for toxic effects toward A. euteiches f. sp. pisi are enzymatic hydrolysis products of glucosinolates.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3