Effect of Downy Mildew Development on Transpiration of Cucumber Leaves Visualized by Digital Infrared Thermography

Author:

Lindenthal Miriam,Steiner Ulrike,Dehne H.-W.,Oerke E.-C.

Abstract

Disease progress of downy mildew on cucumber leaves, caused by the obligate biotrophic pathogen Pseudoperonospora cubensis, was shown to be associated with various changes in transpiration depending on the stage of pathogenesis. Spatial and temporal changes in the transpiration rate of infected and noninfected cucumber leaves were visualized by digital infrared thermography in combination with measurements of gas exchange as well as microscopic observations of pathogen growth within plant tissue and stomatal aperture during pathogenesis. Transpiration of cucumber leaf tissue was correlated to leaf temperature in a negative linear manner (r = -0.762, P < 0.001, n = 18). Leaf areas colonized by Pseudoperonospora cubensis exhibited a presymptomatic decrease in leaf tem perature up to 0.8°C lower than noninfected tissue due to abnormal stomata opening. The appearance of chlorosis was associated with a cooling effect caused by the loss of integrity of cell membranes leading to a larger amount of apoplastic water in infected tissue. Increased water loss from damaged cells and the inability of infected plant tissue to regulate stomatal opening promoted cell death and desiccation of dying tissue. Ultimately, the lack of natural cooling from necrotic tissue was associated with an increase in leaf temperature. These changes in leaf temperature during downy mildew development resulted in a considerable heterogeneity in temperature distribution of infected leaves. The maximum temperature difference within a thermogram of cucumber leaves allowed the discrimination between healthy and infected leaves before visible symptoms appeared.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3