Initial Infection and Colonization of Leaves and Stems of Cling Peach by Tranzschelia discolor

Author:

Soto-Estrada A.,Förster H.,DeMason D. A.,Adaskaveg J. E.

Abstract

Initial infection processes and the subsequent colonization of leaves and young stems of peach by Tranzschelia discolor were studied. On leaves where multiple disease cycles of peach rust occur during the growing season, urediniospores germinated after 4 h of wetness. Germ tubes became septate and formed appressoria only over leaf stomata beginning 18 h after inoculation. No appressoria, however, formed over stomata of positive replicas of leaf surfaces indicating nonthigmotropic responses of germ tubes. On young, primary-growth stems (ca. 8 weeks old), stomata were mostly closed, less frequent than on leaves, and recessed from the surface of the cuticle of the epidermis. Although appressoria formation was not observed on inoculated stems, germ tube growth of urediniospores was directional toward stomata. Penetration of stem tissue is apparently a less common event that was reflected by a lower occurrence of stem lesions compared with that of leaf lesions in our potted plant inoculation studies and previous field observations. Still, stem lesions are important as sources of primary inoculum each spring and were reproduced in this study for the first time. Fungal colonization of leaves and stems was subepidermal-intercellular and haustoria were commonly found within mesophyll or cortical cells, respectively. No fungal colonization was observed in cambial stem tissue. Vascular tissue was also not colonized and delimited lesions in leaves and stems. Morphological host responses were not observed in infections on either leaves or young stems. In older stems (>32 weeks old), however, the infection was delimited by a wound periderm after uredinial formation. Furthermore, with continued secondary growth, stems recovered and fungal lesions became part of the bark tissue of woody branches. Thus, the fungus must infect primary-growth branches each year to establish stem lesions.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3