Affiliation:
1. First and sixth authors: College of Biology, Hunan University, Changsha, Hunan 410082, China; first, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and seventh authors: U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164-6430.
Abstract
Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, is a dikaryotic, biotrophic, and macrocyclic fungus. Genetic study of P. striiformis f. sp. tritici virulence was not possible until the recent discovery of Berberis spp. and Mahonia spp. as alternate hosts. To determine inheritance of virulence and map virulence genes, a segregating population of 119 isolates was developed by self-fertilizing P. striiformis f. sp. tritici isolate 08-220 (race PSTv-11) on barberry leaves under controlled greenhouse conditions. The progeny isolates were phenotyped on a set of 29 wheat lines with single genes for race-specific resistance and genotyped with simple sequence repeat (SSR) markers, single nucleotide polymorphism (SNP) markers derived from secreted protein genes, and SNP markers from genotyping-by-sequencing (GBS). Using the GBS technique, 10,163 polymorphic GBS-SNP markers were identified. Clustering and principal component analysis grouped these markers into six genetic groups, and a genetic map, consisting of six linkage groups, was constructed with 805 markers. The six clusters or linkage groups resulting from these analyses indicated a haploid chromosome number of six in P. striiformis f. sp. tritici. Through virulence testing of the progeny isolates, the parental isolate was found to be homozygous for the avirulence loci corresponding to resistance genes Yr5, Yr10, Yr15, Yr24, Yr32, YrSP, YrTr1, Yr45, and Yr53 and homozygous for the virulence locus corresponding to resistance gene Yr41. Segregation was observed for virulence phenotypes in response to the remaining 19 single-gene lines. A single dominant gene or two dominant genes with different nonallelic gene interactions were identified for each of the segregating virulence phenotypes. Of 27 dominant virulence genes identified, 17 were mapped to two chromosomes. Markers tightly linked to some of the virulence loci may facilitate further studies to clone these genes. The virulence genes and their inheritance information are useful for understanding the host−pathogen interactions and for selecting effective resistance genes or gene combinations for developing stripe rust resistant wheat cultivars.
Subject
Plant Science,Agronomy and Crop Science