Characterizing Heterogeneity and Determining Sample Sizes for Accurately Estimating Wheat Fusarium Head Blight Index in Research Plots

Author:

Moraes Wanderson Bucker1ORCID,Madden Laurence V.1ORCID,Paul Pierce A.1

Affiliation:

1. Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691

Abstract

Because Fusarium head blight (FHB) intensity is usually highly variable within a plot, the number of spikes rated for FHB index (IND) quantification must be considered when designing experiments. In addition, quantification of sources of IND heterogeneity is crucial for defining sampling protocols. Field experiments were conducted to quantify the variability of IND (“field severity”) at different spatial scales and to investigate the effects of sample size on estimated plot-level mean IND and its accuracy. A total of 216 7-row × 6-m-long plots of a moderately resistant and a susceptible cultivar were spray-inoculated with different Fusarium graminearum spore concentrations at anthesis to generate a range of IND levels. A one-stage cluster sampling approach was used to estimate IND, with an average of 32 spikes rated at each of 10 equally spaced points per plot. Plot-level mean IND ranged from 0.9 to 37.9%. Heterogeneity of IND, quantified by fitting unconditional hierarchical linear models, was higher among spikes within clusters than among clusters within plots or among plots. The projected relative error of mean IND increased as mean IND decreased, and as sample size decreased to <100 spikes per plot. Simple random samples were drawn with replacement 50,000 times from the original dataset for each plot and used to estimate the effects of sample sizes on mean IND. Samples of 100 or more spikes resulted in more precise estimates of mean IND than smaller samples. Poor sampling may result in inaccurate estimates of IND and poor interpretation of results.

Funder

Ohio Agricultural Research and Development Center

U.S. Wheat & Barley Scab Initiative

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3