A Remarkable Expansion of Oligopeptide Transporter Genes in Rust Fungi (Pucciniales) Suggests a Specialization in Nutrient Acquisition for Obligate Biotrophy

Author:

Guerillot Pamela1ORCID,Salamov Asaf2,Louet Clémentine1,Morin Emmanuelle12,Frey Pascal1ORCID,Grigoriev Igor V.23,Duplessis Sébastien1ORCID

Affiliation:

1. Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France

2. US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A.

3. Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, U.S.A.

Abstract

Nutrient acquisition by rust fungi during their biotrophic growth has been assigned to a few transporters expressed in haustorial infection structures. We performed a comparative genomic analysis of all transporter genes (hereafter termed transportome) classified according to the Transporter Classification Database, focusing specifically on rust fungi (order Pucciniales) versus other species in the Dikarya. We also surveyed expression of transporter genes in the poplar rust fungus for which transcriptomics data are available across the whole life cycle. Despite a significant increase in gene number, rust fungi presented a reduced transportome compared with most fungi in the Dikarya. However, a few transporter families in the subclass Porters showed significant expansions. Notably, three metal transport-related families involved in the import, export, and sequestration of metals were expanded in Pucciniales and expressed at various stages of the rust life cycle, suggesting a tight regulation of metal homeostasis. The most remarkable gene expansion in the Pucciniales was observed for the oligopeptide transporter (OPT) family, with 25 genes on average compared with seven to 14 genes in the other surveyed taxonomical ranks. A phylogenetic analysis showed several specific expansion events at the root of the order Pucciniales with subsequent expansions in rust taxonomical families. The OPT genes showed dynamic expression patterns along the rust life cycle and more particularly during infection of the poplar host tree, suggesting a possible specialization for the acquisition of nitrogen and sulfur through the transport of oligopeptides from the host during biotrophic growth.

Funder

Agence Nationale de la Recherche

Joint Genome Institute

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3