MicroRNA Expression Profiles in Response to Phytophthora infestans and Oidium neolycopersici and Functional Identification of sly-miR397 in Tomato

Author:

Guan Yuanyuan1,Wei Zhiyuan1,Song Puwen1,Zhou Luyi1,Hu Haiyan1,Hu Ping1,Li Chengwei2ORCID

Affiliation:

1. College of Life Science and Technology, Henan Engineering Research Center of Crop Genome Editing, Henan Institute of Science and Technology, Xinxiang 453000, China

2. College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract

Late blight and powdery mildew are two widespread tomato diseases caused by Phytophthora infestans and Oidium neolycopersici, respectively, which reduce the quantity and quality of tomato. MicroRNAs (miRNAs) play critical roles in tomato resistance to various pathogens. Investigating the function of miRNAs is of great significance in controlling tomato diseases. To identify potential miRNAs involved in the interaction of tomato with P. infestans or O. neolycopersici, we analyzed the expression profiles of small RNAs in tomato leaves infected with these two pathogens using RNA-seq technology. A total of 330 and 288 miRNAs exhibited differences in expression levels after exposure to P. infestans and O. neolycopersici, respectively. One hundred and forty-six commonly differentially expressed (DE) miRNAs responsive to P. infestans and O. neolycopersici infestation were detected, including 10 commonly known conserved DE miRNAs and 136 novel miRNAs. Among these known DE miRNAs, sly-miR397 was strongly downregulated in response to P. infestans or O. neolycopersici infection. Silencing of sly-miR397 resulted in enhanced tolerance to the pathogens, whereas overexpression of sly-miR397 showed increased susceptibility. Furthermore, changes in sly-miR397 expression could also affect expression levels of pathogenesis-related genes and reactive oxygen species-scavenging genes, leading to altered necrotic cells and H2O2 levels. In addition, the number of lateral branches significantly changed in transgenic plants. Taken together, our results provide potential miRNA resources for further research of miRNA-disease associations and indicates that sly-miR397 acts as a negative regulator of disease resistance and influences lateral branch development in tomato.

Funder

National Natural Science Foundation of China

Key Scientific and Technological Research Projects in Henan Province

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3