Strength in Numbers: Density-Dependent Volatile-Induced Antimicrobial Activity by Xanthomonas perforans

Author:

Klein-Gordon Jeannie M.12ORCID,Guingab-Cagmat Joy3,Minsavage Gerald V.1,Meke Laurel3,Vallad Gary E.14,Goss Erica M.15,Garrett Timothy J.26,Jones Jeffrey B.1ORCID

Affiliation:

1. Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL

2. Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI

3. Southeast Center for Integrated Metabolomics (SECIM), University of Florida, Gainesville, FL

4. Gulf Coast Research and Education Center, IFAS, University of Florida, Balm, FL

5. Emerging Pathogens Institute, University of Florida, Gainesville, FL

6. Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL

Abstract

For most of the 20th century, Xanthomonas euvesicatoria was the only known bacterium associated with bacterial spot of tomato in Florida. X. perforans quickly replaced X. euvesicatoria, mainly because of production of three bacteriocins (BCNs) against X. euvesicatoria; however, X. perforans outcompeted X. euvesicatoria even when the three known BCNs were deleted. Surprisingly, we observed antimicrobial activity against X. euvesicatoria in the BCN triple mutant when the triple mutant was grown in Petri plates containing multiple spots but not in Petri plates containing only one spot. We determined that changes in the headspace composition (i.e., volatiles) rather than a diffusible signal in the agar were required for induction of the antimicrobial activity. Other Xanthomonas species also produced volatile-induced antimicrobial compounds against X. euvesicatoria and elicited antimicrobial activity by X. perforans. A wide range of plant pathogenic bacteria, including Clavibacter michiganensis subsp. michiganensis, Pantoea stewartii, and Pseudomonas cichorii, also elicited antimicrobial activity by X. perforans when multiple spots of the species were present. To identify potential antimicrobial compounds, we performed liquid chromatography with high-resolution mass spectrometry of the agar surrounding the spot in the high cell density Petri plates where the antimicrobial activity was present compared with agar surrounding the spot in Petri plates with one spot where antimicrobial activity was not observed. Among the compounds identified in the zone of inhibition were N-butanoyl-L-homoserine lactone and N-(3-hydroxy-butanoyl)-homoserine lactone, which are known quorum-sensing metabolites in other bacteria.

Funder

National Science Foundation Graduate Research Fellowship

U.S. Department of Agriculture–National Institute of Food and Agriculture Specialty Crop Research Initiative

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3