Benzimidazole-Resistant Isolates with E198A/V/K Mutations in the β-Tubulin Gene Possess Different Fitness and Competitive Ability in Botrytis cinerea

Author:

Fan Fei1,Li Xia-Bing1,Yang Yuan-Yuan1,Zhang Jing-Yue1,Zhu Yong-Xu1,Yin Wei-Xiao2ORCID,Li Guo-Qing2,Luo Chao-Xi12ORCID

Affiliation:

1. Key Lab of Horticultural Plant Biology, Ministry of Education, and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2. College of Plant Science and Technology, and Hubei Key Lab of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Previous studies in Botrytis cinerea showed that resistance to methyl benzimidazole carbamates (MBCs) was mainly related to E198A/V/K and F200Y mutations of the β-tubulin gene, and E198V was the dominant mutation in the resistant subpopulation in Hubei Province of China, indicating that resistant mutations might influence fitness. However, little is known about the effect of each E198A/V/K mutation on fitness. In this study, the fitness and competitive ability of isolates with E198A/V/K mutations were investigated. Results showed that E198A/V/K isolates and wild-type isolates shared similar fitness components in terms of virulence, sporulation, conidial germination, oxidative sensitivity, and sclerotial production and viability. However, slower mycelial growth at 4°C, higher sensitivity to 4% NaCl, and increased sclerotial production percentage at 4°C were observed in the isolates with E198V, E198K, and E198A mutations, respectively. Competitive analysis showed that the wild-type subpopulation became dominant after three disease cycles in the absence of fungicide selection pressure, whereas the resistant subpopulation seized the space of the sensitive subpopulation upon MBC application. Unexpectedly, the frequency of E198V isolates decreased dramatically after the first disease cycle with or without fungicide selection pressure. These results suggest that MBC-resistant isolates suffer little fitness penalty but possess competitive disadvantages in the absence of fungicide selection pressure. Under fungicide selection pressure, E198V isolates could not compete with E198A/K isolates. According to the current results, there is a great possibility that the E198V mutation will lose dominance in the future in China.

Funder

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3