UHPLC-MS/MS Identification of Metabolites in Winterberry Fruit Putatively Associated with Natural Disease Resistance to Diaporthe ilicicola

Author:

Emanuel Isabel Brooke1,Cooperstone Jessica23,Peduto Hand Francesca4

Affiliation:

1. Ohio State University, Plant Pathology, Columbus, Ohio, United States;

2. Ohio State University, Horticulture and Crop Science, Columbus, Ohio, United States

3. Ohio State University, Food Science and Technology, Columbus, Ohio, United States;

4. Ohio State University, Plant Pathology, 2021 Coffey Road, Columbus, Ohio, United States, 43210;

Abstract

Winterberry holly (Ilex verticillata) is an ornamental plant popularly used in landscape design and sold as cut branches for fall and winter seasonal decoration. Latent fruit rot of winterberry is an emerging disease caused by the fungus Diaporthe ilicicola, which can result in up to 100% crop loss. Diaporthe ilicicola infects open flowers in spring, but symptom onset does not occur until the end of the growing season when the fruit is fully mature. This study was conducted to identify compounds displaying significant variation in abundance during fruit maturation and that may be putatively associated with natural disease resistance observed when the fruit is immature. Winterberry ‘Sparkleberry’ fruits collected at four timepoints during the 2018 and 2019 seasons were extracted in methanol and analyzed using high resolution UPLC-MS/MS. Results showed a distinct separation of metabolic profiles based on fruit phenological stage. The top 100 features which were differentially expressed between immature and mature fruit were selected from both ESI (-) and ESI (+) datasets for annotation. Eleven compounds shown to decrease throughout the season included cinnamic acids, a triterpenoid, terpene lactones, stilbene glycosides, a cyanidin glycoside and a furopyran. Nine compounds shown to accumulate throughout the season included chlorogenic acid derivatives, hydrolysable tannins, flavonoid glycosides, and a triterpene saponin. Future research will further confirm the exact identity of the compounds of interest and determine whether they are biologically active toward D. ilicicola or I. verticillata. Results could inform breeding programs, chemical management programs, and novel antifungal compound development pipelines.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3