Effect of Temperature, Vector Life Stage, and Plant Access Period on Transmission of Banana bunchy top virus to Banana

Author:

Anhalt M. D.,Almeida R. P. P.

Abstract

The study of the transmission biology of insect-borne plant viruses is important to develop disease control practices. We characterized the transmission of a nanovirus, Banana bunchy top virus (BBTV), by its aphid vector Pentalonia nigronervosa Coquerel (Hemiptera, Aphididae) with respect to temperature, vector life stage, and plant access time. Adult aphids transmitted BBTV more efficiently than third instar nymphs at all temperatures tested. Adult aphids transmitted the virus more efficiently at 25 and 30°C than at 20°C, but temperature had no impact on transmission efficiency by nymphs. By decoupling the relationship between temperature and aphid BBTV acquisition or inoculation, we determined that temperature affected inoculation events more strongly than acquisition. Longer plant access periods increased viral acquisition and inoculation efficiencies in a range of 60 min to 24 h. Both BBTV acquisition and inoculation efficiencies peaked after 18 h of plant access period. We also show that BBTV transmission by P. nigronervosa requires a latent period. Our results demonstrate that vector transmission of BBTV is affected by temperature, vector life stage, and plant access period.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3