Effect of Crop Growth and Canopy Filtration on the Dynamics of Plant Disease Epidemics Spread by Aerially Dispersed Spores

Author:

Ferrandino F. J.

Abstract

Most mathematical models of plant disease epidemics ignore the growth and phenology of the host crop. Unfortunately, reports of disease development are often not accompanied by a simultaneous and commensurate evaluation of crop development. However, the time scale for increases in the leaf area of field crops is comparable to the time scale of epidemics. This simultaneous development of host and pathogen has many ramifications on the resulting plant disease epidemic. First, there is a simple dilution effect resulting from the introduction of new healthy leaf area with time. Often, measurements of disease levels are made pro rata (per unit of host leaf area or total root length or mass). Thus, host growth will reduce the apparent infection rate. A second, related effect, has to do with the so-called “correction factor,” which accounts for inoculum falling on already infected tissue. This factor accounts for multiple infection and is given by the fraction of the host tissue that is susceptible to disease. As an epidemic develops, less and less tissue is open to infection and the initial exponential growth slows. Crop growth delays the impact of this limiting effect and, therefore, tends to increase the rate of disease progress. A third and often neglected effect arises when an increase in the density of susceptible host tissue results in a corresponding increase in the basic reproduction ratio, R0, defined as the ratio of the total number of daughter lesions produced to the number of original mother lesions. This occurs when the transport efficiency of inoculum from infected to susceptible host is strongly dependent on the spatial density of plant tissue. Thus, crop growth may have a major impact on the development of plant disease epidemics occurring during the vegetative phase of crop growth. The effects that these crop growth-related factors have on plant disease epidemics spread by airborne spores are evaluated using mathematical models and their importance is discussed. In particular, plant disease epidemics initiated by the introduction of inoculum during this stage of development are shown to be relatively insensitive to the time at which inoculum is introduced.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3