Adaptation to Fungicides in Monilinia fructicola Isolates with Different Fungicide Resistance Phenotypes

Author:

Luo Chao-Xi,Schnabel Guido

Abstract

The ability to develop fungicide resistance was assessed in Monilinia fructicola isolates with different fungicide sensitivity phenotypes by adapting mycelium and conidia to increasing concentrations of selective fungicides and UV mutagenesis. Results showed that adaptation to Quinone outside inhibitor (QoI) fungicide azoxystrobin and sterol demethylation inhibitor (DMI) fungicide propiconazole was more effective in conidial-transfer experiments compared to mycelial-transfer experiments. DMI-resistant (DMI-R) isolates adapted to significantly higher doses of azoxystrobin in both, mycelial- and conidial-transfer experiments compared to benzimidazole-resistant (BZI-R) and sensitive (S) isolates. Adaptation to propiconazole in conidial-transfer experiments was accelerated in BZI-R isolates when a stable, nonlethal dose of 50 μg/ml thiophanate-methyl was added to the selection medium. One of two azoxystrobin-resistant mutants from DMI-R isolates did not show any fitness penalties; the other isolate expired before further tests could be carried out. The viable mutant caused larger lesions on detached peach fruit sprayed with azoxystrobin compared to the parental isolate. The azoxystrobin sensitivity of the viable mutant returned to baseline levels after the mutant was transferred to unamended medium. However, azoxystrobin resistance recovered quicker in the mutant compared to the corresponding parental isolate after renewed subculturing on medium amended with 0.2 and 1 μg/ml azoxystrobin; only the mutant but not the parental isolate was able to adapt to 5 μg/ml azoxystrobin. In UV mutagenesis experiments, the DMI-R isolates produced significantly more mutants compared to S isolates. All of the UV-induced mutants showed stable fungicide resistance with little fitness penalty. This study indicates the potential for QoI fungicide resistance development in M. fructicola in the absence of a mutagen and provides evidence for increased mutability and predisposition to accelerated adaptation to azoxystrobin in M. fructicola isolates resistant to DMI fungicides.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3