Deletion of a Chromosome Arm Altered Wheat Resistance to Fusarium Head Blight and Deoxynivalenol Accumulation in Chinese Spring

Author:

Ma Hong-Xiang1,Bai Gui-Hua2,Gill Bikram S.3,Hart L. Patrick4

Affiliation:

1. Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China, and Department of Agronomy, Kansas State University, Manhattan 66506

2. Unites States Department of Agriculture-Agricultural Research Service-Plant Science and Entomology Research Unit

3. Department of Plant Pathology, Kansas State University, Manhattan 66506

4. Department of Plant Pathology, Michigan State University, East Lansing 48824

Abstract

Fusarium head blight (FHB), caused by Fusarium graminearum Schwabe, is an important disease of wheat worldwide. Production of deoxynivalenol (DON) in infected wheat grain by F. graminearum is a major safety concern when considering use of the grain as feed for livestock or for human consumption. Determining chromosome locations of FHB-related genes may facilitate enhancement of wheat resistance to FHB and DON accumulation. In this study, a set of 30 ditelosomic lines derived from Chinese Spring, a moderately FHB-resistant landrace from China, were evaluated for proportion of scabbed spikelets per inoculated spike in the greenhouse and for DON contamination in harvested grain over 2 years. Significant variation in the proportion of scabbed spikelets was observed among ditelosomic lines, ranging from 13 to 95%. Seven ditelosomic lines exhibited a greater proportion of scabbed spikelets and three of these also had greater DON content than Chinese Spring (P = 0.01), suggesting that those missing chromosome arms may carry genes that contribute to resistance to FHB. Six ditelosomic lines had a reduction in proportion of scabbed spikelets, suggesting that susceptibility factors or resistance suppressors may be on these missing chromosomal arms. Selection for low proportion of scabbed spikelets in general will select for low DON content.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3