Stable Polymorphisms in a Two-Locus Gene-for-Gene System

Author:

Segarra J.

Abstract

A two-locus gene-for-gene model is presented to analyze coevolutionary dynamics in interactions between host plants and their pathogens. Using both analytical and simulation approximations, we show that the behavior of the model is very simple with one locus. In the reciprocal genetic feedback version, there is a smooth outward spiral toward the boundaries. In the delayed feedback version, there is an infinite family of closed curves corresponding to different initial conditions. Both versions of the model are stabilized by the addition of recurrent mutation. Either a stable interior equilibrium or a stable limit cycle appears. But with the two-locus model, different coevolutionary outcomes are predicted according to the parameter values. For a wide range of small and medium values of virulence and resistance costs, complex fluctuations arise. The number of virulence alleles per isolate and the number of resistance alleles per plant cycle indefinitely. If the costs of both virulence and resistance are above a threshold, the final state of the coevolutionary dynamics is a stable single-resistance static polymorphism in the host and avirulence in the parasite. An equivalent threshold to maintain a disease-free host population was obtained analytically for a multilocus system. These expressions can be used to determine the number of single-resistance host genotypes that would have to be present in a mixture to prevent the spread of any virulent race of pathogen. The model demonstrates that it is preferable to use mixtures of single-resistant genotypes rather than using multiple resistance alleles in the same cultivar.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3