Biological Control Efficiency of Fusarium Wilt of Tomato by Nonpathogenic Fusarium oxysporum Fo-B2 in Different Environments

Author:

Shishido Masahiro,Miwa Chika,Usami Toshiyuki,Amemiya Yoshimiki,Johnson Kenneth B.

Abstract

Efficiency of nonpathogenic Fusarium oxysporum Fo-B2 for the biological control of Fusarium wilt of tomato, caused by F. oxysporum f. sp. lycopersici CU1, was examined in different environments: a growth chamber with sterile soil-less medium, a greenhouse with fumigated or nonfumigated soil, and nonfumigated field plots. Inoculation of Fo-B2 onto tomato roots significantly reduced the severity of disease, but the efficiency of disease suppression decreased as the experimental environment became less controlled. Relationships between the recovery of Fo-B2 from hypocotyls and the disease severity indicated that the biocontrol agent was most effective when it colonized vascular tissues intensively. Moreover, the degree of Fo-B2 colonization was greatly reduced when the seedlings were grown in nonfumigated soil. Dose-response models (negative exponential, hyperbolic saturation, and logistic) were fit to observed data collected over a range of inoculum densities of the pathogen and the antagonist; the logistic model provided the best fit in all environments. The ratios of an 50% effective dose parameter for Fo-B2 to that of CU1 increased as the environment became less controlled, suggesting that environmentally related efficiency reduction impacted the antagonist more than the pathogen. The results suggest that indigenous soil microbes were a primary factor negatively influencing the efficiency of Fo-B2. Therefore, early establishment of the antagonist in a noncompetitive environment prior to outplanting could improve the efficacy of biological control.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3