Genetic Structure and Analysis of Host and Nonhost Interactions of Striga gesnerioides (Witchweed) from Central Florida

Author:

Botanga Christopher J.,Timko Michael P.

Abstract

Striga gesnerioides is a root hemiparasite of wild and cultivated legumes, among which cowpea (Vigna unguiculata) and Indigofera hirsuta are suitable hosts. In this study, we examined the genetic structure and host-parasite interaction of a strain of S. gesnerioides parasitizing I. hirsuta (SGFL) from central Florida (United States). Amplified fragment length polymorphism analysis was used to compare genetic profiles from 71 individual S. gesnerioides plants (SGFL) representing four different populations in central Florida. Our results showed that these individuals are genetically similar, with pairwise genetic distances ranging from 0.00 to 0.037. A cluster analysis grouped all four S. gesnerioides populations from Florida, separating them from S. gesnerioides isolates parasitic on I. hirsuta and cowpea collected from West Africa. One EcoRI and MseI selective primer combination generated a 510-bp fragment present in individuals from the SGFL and the West African isolate parasitic on I. hirsuta, but absent in isolates parasitic on cowpea. Germination of seed from individuals of all four populations of S. gesnerioides parasitic on I. hirsuta from Florida was stimulated by root exudates from cowpea genotypes Blackeye and TVX-3236, known to be highly susceptible to all races of S. gesnerioides parasitic on cowpea in West Africa. SGFL seedlings failed to parasitize cowpea, with the development of attached SGFL seedlings arrested at the tubercle stage. The very high level of genetic uniformity observed within and among the central Florida populations suggests that there was likely a single introduction of the parasite or strong host-driven selection to genetic uniformity.These findings are important in assessing the potential of the parasite as an agronomically significant pest in the United States.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3