Author:
Fofana Bourlaye,Benhamou Nicole,McNally David J.,Labbé Caroline,Séguin Armand,Bélanger Richard R.
Abstract
In this study, cucumber plants (Cucumis sativus) expressing induced resistance against powdery mildew (caused by Podosphaera xanthii) were infiltrated with inhibitors of cinnamate 4-hydroxylase, 4-coumarate:CoA ligase (4CL), and chalcone synthase (CHS) to evaluate the role of flavonoid phytoalexin production in induced disease resistance. Light and transmission electron microscopy demonstrated ultrastructural changes in inhibited plants, and biochemical analyses determined levels of CHS and β-glucosidase enzyme activity and 4CL protein accumulation. Our results showed that elicited plants displayed a high level of induced resistance. In contrast, down regulation of CHS, a key enzyme of the flavonoid pathway, resulted in nearly complete suppression of induced resistance, and microscopy confirmed the development of healthy fungal haustoria within these plants. Inhibition of 4CL ligase, an enzyme largely responsible for channeling phenylpropanoid metabolites into the lignin pathway, had little effect on induced disease resistance. Biochemical analyses revealed similar levels of 4CL protein accumulation for all treatments, suggesting no alterations of nontargeted functions within inhibited plants. Collectively, the results of this study support the idea that induced resistance in cucumber is largely correlated with rapid de novo biosynthesis of flavonoid phytoalexin compounds.
Subject
Plant Science,Agronomy and Crop Science
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献