Author:
Accotto Gian Paolo,Nervo Giuseppe,Acciarri Nazzareno,Tavella Luciana,Vecchiati Manuela,Schiavi Massimo,Mason Giovanna,Vaira Anna Maria
Abstract
Tomato hybrids obtained from homozygous progeny of line 30-4, engineered for Tomato spotted wilt virus (TSWV) resistance, were tested under field conditions in two locations with their corresponding nontransgenic hybrids. No transgenic hybrid became infected, but 33 to 50% of plants of each nontransgenic hybrid became infected with a severe reduction of marketable fruit production. The transgenic hybrids conformed to the standard agronomic characteristics of the corresponding nontransgenic ones. Fruit were collected from the nontransgenic plots included in the experimental field and from border rows, and seed were used to estimate the flow of the transgene via pollen. No transgene flow was detected in the protected crops; however, in the open field experiment, 0.32% of tomato seedlings were found to contain the genetic modification. Immunity to TSWV infection in 30-4 hybrids was confirmed in laboratory conditions using mechanical inoculation and grafting. Thrips inoculation in leaf discs of line 30-4 demonstrated that TSWV replication was inhibited at the primary infection site but not in leaf discs of a commercial hybrid containing the naturally occurring resistance gene Sw-5. Due to the high economic value of tomato crops worldwide and the importance of TSWV, the engineered resistance described here is of practical value for breeding into cultivars of commercial interest, because it could be combined with naturally occurring resistance, thus greatly reducing the ability of the virus to develop resistance-breaking strains.
Subject
Plant Science,Agronomy and Crop Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献