First Report of Brown Spot Caused by Alternaria alternata on Potato (Solanum tuberosom L.) in Korea

Author:

Choi Jaehyuk1,Jeong Min-Hye2,Choi Eu Ddeum3,Park Jiyoon4,Park Sook-Young56

Affiliation:

1. Incheon National University, 34958, Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon, Korea (the Republic of);

2. Suncheon National University College of Life Science and Natural Resources, 372355, Plant Medicine, Suncheon, Jeollanam-do, Korea (the Republic of);

3. Pear Research Institute, National Institute of Horticultural & Herbal ScienceNaju 58216Naju, Jeonnam, Korea (the Republic of), 58216, ;

4. Sunchon National University, 65380, Department of Plant Medicine, College of Life Science and Natural Resources, Suncheon, Jeollanam-do, Korea (the Republic of);

5. Sunchon National University, 65380, Plant Medicine, 255 Jungang-Ro, Suncheon, Korea (the Republic of), 57922, ,

6. Korea (the Republic of);

Abstract

In June 2020, brown spot symptoms were observed in a commercial potato field located in Yeocheon, Gyeonggi Province, Korea. The symptoms were similar to those associated with early blight. Brown lesions on leaves were circular and expanded rapidly under high humidity and warm temperatures ranging 12°C at night to 30°C during daytime. Over 60% of potato (Solanum tuberosum L. cv. Superior) leaves showed the symptoms. For fungal isolation, infected leaf tissues (5 × 5 mm) from 14 infected samples were immersed in 70% ethanol for 1 min, rinsed three times in sterilized water, dried, placed on water agar amended with 100 ppm of streptomycin, and then incubated in the dark at 25°C. Hyphae emerging from the tissues were subcultured on V8-Juice agar (8% of V8-Juice, 1.5% agar, pH 7), and the obtaining cultures were subjected to single-spore isolation, resulting in 14 isolates (SYP-934~947). Three representative isolates, SYP-934 to SYP-936, were deposited in the Korean Agriculture Culture Collection (Accession Nos. KACC 410058 to KACC 410060). Conidia (n = 100) produced on the colony were brown, ellipsoid to ovoid with walls ornamented, 1 to 6 transverse and 0-3 vertical septa, and length × width of 20-45 × 7 to 24 μm (n = 100). Their morphological characteristics were consistent with Alternaria alternata (Simmons, 2007; van der Waals et al., 2011; Woundenberg et al. 2015). Sequences of the following loci in the 14 isolates were determined as described in Woundenberg et al. (2013 and 2014: the internal transcribed spacer (primer pairs VG9/ITS4, GenBank accession nos. OP581413-25), glyceraldehyde-3-phosphate dehydrogenase (gpd1/gpd2, OP588286-99), RNA polymerase second largest subunit (RPB2-5F2/fRPB2-7cR, OP588314-27), translation elongation factor 1-alpha (EF1-728F/EF1-986R, OP588300-13), Alternaria major allergen gene (Alt-For/Alt-Rev, OP588328-41), endopolygalacturonase (PG3/PG2b, OP588342-55), and an unknown gene region (OPA10-2R/OPA10-2L, OP588356-68). A neighbor-joining phylogenetic analysis based on the concatenated gene sequences, which was performed using the MEGA X program (Kumar et al., 2018), placed the 14 isolates in the clade containing A. alternata isolates. To test pathogenicity, one-month-old potato (S. tuberosum cv. Superior) plants grown in a 25°C growth chamber were sprayed with conidial suspensions (1×106 conidia/mL) prepared from 14-day-old cultures of three isolates (KACC 410058 to KACC 410060). Sterile distilled water was used as the control treatment. The inoculated pots were placed in a plastic box to maintain high humidity and incubated in the dark at 25°C for 2 days. The plants were transferred to a growth chamber (16h light with over 70% humidity at 25°C). Symptoms were first observed after 3 days post inoculation (dpi) with all three isolates, and severe brown spot symptoms were observed after 7 dpi. No symptom was observed in the control treatment. The pathogenicity assay was repeated at triplicate. Reisolated cultures from lesions were confirmed to be A. alternata based on their sequence at the rpb2 locus, thus fulfilling Koch’s postulates. Alternaria alternata has been reported to cause brown spot and leaf blight on potato leaves in Israel (Dorby et al., 1984) and South Africa (van der Waals., et al. 2011). To our knowledge, this study is the first report of A. alternata causing brown spot disease in Korea.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3