First Report of Leaf Spot Caused by Colletotrichum fructicola on Myrica rubra in China

Author:

Li Shucheng1,Xiao Liuhua1,Wu Fan2,Wang Yinbao1,Jia Mingshu3,Chen Ming4,Chen Jinyin5,Xiang Miaolian6

Affiliation:

1. Jiangxi Agricultural University, 91595, College of Agronomy, Nanchang, Jiangxi, China;

2. Jiangxi Agricultural University, College of Agronomy, No. 1101, Zhimin Avenue, Jiaoqiao Town, Qingshanhu District, Nanchang, Jiangxi, China, 330045, ;

3. Jiangxi Agricultural University, 91595, College of Agronomy, Nanchang, Jiangxi, China, ;

4. Jiangxi Agricultural University, 91595, College of Agronomy, No.1101, Zhimin Rd, Nanchang City, Jiangxi Province, Nanchang, Jiangxi, China, 330045, ;

5. 330045, Jiangxi Agricultural University, nanchang, China;

6. Jiangxi Agricultural UniversityNanchang, China, 330045;

Abstract

Myrica rubra is an important fruit tree with high nutritional and economic value, which is widely cultivated in multiple regions of China. In January 2021, an unknown disease which caused leaf spot with approximately 20% (n=100 investigated plants) of incidence was discovered on the leaves of M.rubra in Jiujiang City of Jiangxi Province (29.71° N, 115.97° E). The initial symptoms were small pale brown spots (1 to 2 mm diameter) on the leaves, which gradually expanded into round or irregular dark brown spots with the occurrence of the disease, and the lesion developed necrotic tissues in the center at later stages, eventually leading the leaves to chlorotic and wilted. Ten diseased leaves with typical symptoms were collected and the leaf tissue (5 × 5 mm) at junction of diseased and healthy portion were cut. The surfaces were disinfected with 75% ethanol for 45 s, 1% sodium hypochlorite for 1 min, and rinsed in sterile water for 3 times then transferred to potato dextrose agar (PDA) at 28 ± 1 ℃ for 3 days. Five fungal single isolates with similar morphology were purified from single spores. On PDA medium, the colonies initially appeared white with numerous aerial hyphae, and the center of the colony turned gray at later stages, less sporulation. While on modified czapek-dox medium (Peptone 3g, K2HPO4 1g, MgSO4·7H2O 0.5g, KCl 0.5g, FeSO4 0.01g, Maltose 30g, Agar 15g, Distilled water 1000 mL, pH=7.0), the mycelia of the colony were sparse and produced a large number of small bright orange particles (conidial masses). Conidia were single-celled, transparent, smooth-walled, 1-2 oil globule, cylindrical with slightly blunt rounded ends, 14.45-18.44 × 5.54-6.98 μm (av=16.27 μm × 6.19 μm, n=50) in size. These morphological characteristics of the pathogen were similar to the descriptions of Colletotrichum fructicola (Ruan et al, 2017; Yang et al, 2021). To further confirm the identity of the pathogen, genomic DNA from a representative isolate was extracted with DNA Extraction Kit (Yeasen, Shanghai, China), and the internal transcribed spacer (ITS), glyceraldehyde-3-phosphatedehydrogenase (GAPDH), calmodulin gene (CAL), actin (ACT) and chitin synthase 1 (CHS 1) were amplified by using the primers ITS1/ITS4 (Gardes et al, 1993), GDF/GDR (Templeton et al, 1992), CL1C/CL2C (Weir et al, 2012), ACT-512F/ACT-783R and CHS-79F/CHS-345R (Carbone et al, 1999), respectively. The PCR amplified sequences were submitted to GenBank (GenBank Accession No. ITS, MW740334; GAPDH, MW759805; CAL, MW759804; ACT, MW812384; CHS-1, MW759803) and aligned with GenBank showed 100% identity with C. fructicola (GenBank Accession No. ITS, MT355821.1 (546/546 bp); GAPDH, MT374664.1 (255/255 bp); CAL, MK681354.1 (741/741 bp); ACT, MT364655.1 (262/262 bp); CHS, MT374618.1 (271/271 bp)). Phylogenetic tree using the maximum likelihood methods with Kimura 2-parameter model and combined ITS-ACT-GAPDH-CHS-CAL concatenated sequences, bootstrap nodal support for 1000 replicates in MEGA7.0, revealed that the isolate was assigned to C. fructicola strain (ICMP 18581 and CBS 125397) (Yang et al. 2021) with 98% bootstrap support. Pathogenicities of were tested on fifteen healthy M. rubra plants (five for wounded inoculation, five for nonwounded inoculation, and five for controls) in the orchard. Twenty leaves were marked from each plant, and disinfected the surface with 75% ethanol. Ten μL spore suspension (1.0 × 106 conidia/ml) of each isolate from 7-day-old culture were inoculated on the surface of 20 needle-wounded and 20 nonwounded leaves, respectively. Healthy leaves were inoculated with sterile water as controls by the same method. All inoculated leaves were sprayed with sterile water and covered with plastic film to remained humidification. After 5 days, all the wounded leaves which were inoculated with C. fructicola showed similar symptoms to those observed on the original leaves. Symptoms of nonwounded leaves were milder than the wounded inoculated leaves, while control leaves remained healthy. Finally, the C. fructicola was re-isolated from the inoculated leaves. C. fructicola has been reported on Juglans regia, Peucedanum praeruptorum, Paris polyphylla var. Chinensis in China (Wang et al, 2017; Ma et al, 2020; Zhou et al, 2020). As far as we know, this is the first report of C. fructicola causing leaf spot on M.rubra in China. This result contributes to better understand the pathogens causing diseases of M.rubra in this region of China and develop effective control strategies.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3