Novel Sources of Turnip Yellows Virus Resistance in Brassica and Impacts of Temperature on Their Durability

Author:

Congdon Benjamin S.1ORCID,Baulch Jonathan R.1,Coutts Brenda A.2

Affiliation:

1. Primary Industries Development, Department of Primary Industries and Regional Development, Kensington, Western Australia 6151, Australia

2. Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Kensington, Western Australia 6151, Australia

Abstract

Turnip yellows virus (TuYV; family Solemoviridae, genus Polerovirus) is the most widespread and economically damaging virus of canola (Brassica napus L.) production in Australia. However, no Australian commercial seed companies market TuYV-resistant canola cultivars, and little information is available on the susceptibility of those available. To identify potential sources of TuYV resistance, 100 B. napus accessions from the ERANET ASSYST diversity set were screened in the field and five of these were selected for further phenotyping via aphid inoculation. Furthermore, 43 Australian canola cultivars, six B. napus genotypes with previously reported resistance, and 33 B. oleracea and B. rapa cultivars were phenotyped. All Australian cultivars were susceptible except for ‘ATR Stingray’. Stronger resistance to systemic TuYV infection (IR) was identified in diversity set accessions ‘Liraspa-A’, ‘SWU Chinese 3’, and ‘SWU Chinese 5’. As indicated by lower relative enzyme-linked immunosorbent assay absorbance values (R-E405) in infected plants, resistance to TuYV accumulation (AR) often accompanied IR. Moderate IR was identified in four B. oleracea cultivars and one B. rapa cultivar. Very strong AR was identified in four B. oleracea cultivars and AR of some degree was common across many cultivars of this species tested. The impact of temperature during the inoculation access period or post-inoculation incubation on the resistance identified was examined. Infection rates were significantly higher in resistant B. napus genotypes when inoculated at 16°C than at 26°C, suggesting an increase in aphid transmission efficiency. IR in B. napus genotypes was strong when incubated at 16°C, but weakened at elevated temperatures with almost total breakdown in most genotypes at 30°C. However, infected plants of B. napus and B. oleracea genotypes with AR maintained lower R-E405 values than susceptible controls at all temperatures tested. Novel sources of resistance identified in this study offer potential as breeding material in Australia and abroad.

Funder

Department of Primary Industries and Regional Development Boosting Grains Science Partnerships

Grains Research and Development Corporation

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3