Assessment of Resistance to Cereal Cyst Nematode, Stripe Rust, and Powdery Mildew in Wheat-Thinopyrum intermedium Derivatives and Their Chromosome Composition

Author:

Cui Lei12,Ren Yongkang1,Bao Yinguang3,Nan Hai4,Tang Zhaohui1,Guo Qing1,Niu Yuqi1,Yan Wenze1,Sun Yu1,Li Hongjie2ORCID

Affiliation:

1. College of Agriculture, Shanxi Agricultural University, Taiyuan 030031, China

2. National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3. State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China

4. Tianshui Institute of Agricultural Sciences, Tianshui 741200, China

Abstract

Wide hybridization between wheat and wild relatives such as Thinopyrum intermedium is important for broadening genetic diversity and improving disease resistance in wheat. We developed 30 wheat-Th. intermedium derivatives. Here, we report assessments of their resistance to different pathogens including cereal cyst nematode (CCN; Heterodera spp.), Puccinia striiformis f. tritici Erikss. causing stripe rust, and Blumeria graminis f. tritici (DC.) Speer inciting powdery mildew. Under natural field infection, all the wheat-Th. intermedium lines were resistant to at least one of the pathogens, and four lines were resistant to multiple pathogens. Twenty-nine of 30 tested lines exhibited resistance to H. avenae, a dominant CCN species in wheat fields. Twenty-four lines were resistant to H. filipjevi, an emerging threat to wheat production. Tests of phenotypic responses in the naturally infected field nurseries identified six stripe rust-resistant lines and 13 powdery mildew-resistant lines. Mitotic observation demonstrated that these newly developed wheat-Th. intermedium derivatives included not only octoploid but also chromosome addition, substitution, and translocation lines. Chromosome compositions of the four lines resistant to multiple pathogens were analyzed by genomic in situ hybridization and fluorescence in situ hybridization. The octoploid lines Zhong 10-68 and Zhong 10-117 carried both intact Th. intermedium chromosomes and translocated chromosomes. Line Zhong 10-149 had 42 wheat chromosomes and two wheat ditelosomes plus a pair of T3BS·J translocated chromosomes. Line Zhong 10-160 carried 41 wheat chromosomes plus one pair of the J genome chromosomes of Th. intermedium. The multiple disease-resistant wheat-Th. intermedium derivatives, especially lines with chromosome counts close to that of common wheat, provide valuable materials for wheat resistance breeding programs.

Funder

Agricultural Sci-tech Innovation Research Program of Shanxi Agricultural University

Key Research and Development Program of Shanxi Province

National Key Research and Development Project

Agricultural Science and Technology Innovation Program

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3