Relative Contribution of Various Sources of Botrytis cinerea Inoculum in Strawberry Fields in Norway

Author:

Strømeng Gunn Mari1,Hjeljord Linda Gordon2,Stensvand Arne3

Affiliation:

1. Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, and Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division

2. Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science

3. Norwegian Institute for Agricultural and Environmental Research, Plant Health and Plant Protection Division, N-1432 Ås, Norway

Abstract

To identify the most important sources of inoculum of Botrytis cinerea (causal agent of gray mold) in commercial strawberry (Fragaria × ananassa) fields in Norway, soil and overwintered plant material were collected from planting beds and alleys at five locations in 2000 to 2002 (13 samples altogether). Plant material was sorted by category (e.g., leaves, stems, mulch, and weeds). After subsamples of each material were incubated for 5 days at 20°C at high humidity, conidiophores of B. cinerea growing from mycelia and sclerotia were counted. Overwintered plant debris within planting beds yielded more than 96% of total conidiophores counted, the remainder originating from plant debris collected from alleys or soil. Overwintered strawberry plant debris produced 98% of the conidiophores within planting beds and 80% of the conidiophores in the alleys, while the remaining was produced by weeds. Senescing and dead leaf laminae produced 45% of the conidiophores while stem residues (i.e., petioles, stolons, inflorescences, and unidentifiable stem parts) produced 50% and mummified fruit produced 5% within planting beds. The contribution of sclerotia, compared with mycelia, to conidiophore production varied greatly between fields and years. Overall, 47% of the total number of conidiophores produced in plant material within planting beds originated from sclerotia. More than 90% of the conidiophores from sclerotia were found in dead stem residues.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3