Effect of Fungicide and Timing of Application on Soybean Rust Severity and Yield

Author:

Mueller T. A.1,Miles M. R.2,Morel W.3,Marois J. J.4,Wright D. L.5,Kemerait R. C.6,Levy C.7,Hartman G. L.8

Affiliation:

1. Department of Crop Sciences, University of Illinois, Urbana, IL 61801

2. USDA-ARS, National Soybean Research Center, Urbana, IL 61801

3. Ministerio de Agricultura y Ganadería, Centro Regional de Investigación Agrícola (CRIA), Capitán Miranda, Itapúa, Paraguay

4. Department of Plant Pathology

5. Department of Agronomy, University of Florida – North Florida Research and Education Center, Quincy, FL

6. Department of Plant Pathology, University of Georgia, Tifton, GA

7. Commercial Farmers Union of Zimbabwe, Harare, Zimbabwe

8. USDA-ARS, Department of Crop Sciences, National Soybean Research Center, University of Illinois, Urbana, IL 61801

Abstract

Soybean rust, caused by Phakopsora pachyrhizi, is a devastating foliar disease of soybean that may cause significant yield losses if not managed by well-timed fungicide applications. To determine the effect of fungicide timing on soybean rust severity and soybean yield, field trials were completed in Paraguay (four locations), the United States (two locations), and Zimbabwe (one location) from 2005 to 2006. Treatments at each location included applications of tebuconazole, pyraclostrobin, or a combination of azoxystrobin + propiconazole, and in some locations pyraclostrobin + tebuconazole at the following soybean growth stages (GS): (i) GS R1 (beginning flowering), (ii) GS R3 (beginning pod), (iii) GS R5 (beginning seed), (iv) GS R1 + R3, (v) GS R3 + R5, and (vi) GS R1 + R3 + R5. Soybean yields from plots treated with fungicides were 16 to 114% greater than yields from no fungicide control plots in four locations in Paraguay, 12 to 55% greater in two locations in the United States, and 31% greater in Zimbabwe. In all locations, rust severity measured over time as area under the disease progress curve (AUDPC) was negatively correlated (r = –0.3, P < 0.0001) to yield. The effectiveness of any given treatment (timing of application and product applied) was often dependent on when rust was first detected and the intensity of its development. For example, when soybean rust was first observed before GS R3 (two locations in Paraguay), the plants in plots treated with a fungicide at GS R1 had the lowest AUPDC values and highest yields. When soybean rust was first observed after GS R3, plants treated with a fungicide at GS R3 and/or GS R5 had the lowest AUDPC values and highest yields with a few exceptions.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3