Forecasting Site-Specific Leaf Wetness Duration for Input to Disease-Warning Systems

Author:

Kim K. S.1,Gleason M. L.2,Taylor S. E.3

Affiliation:

1. Sustainable Land Use, HortResearch, Private Bag 92169, Auckland, New Zealand

2. Department of Plant Pathology

3. Department of Agronomy, Iowa State University, Ames 50011

Abstract

Empirical models based on classification and regression tree analysis (CART model) or fuzzy logic (FL model) were used to forecast leaf wetness duration (LWD) 24 h into the future, using site-specific weather data estimates as inputs. Forecasted LWD and air temperature then were used as inputs to simulate performance of the Melcast and TOM-CAST disease-warning systems. Overall, the CART and FL models underpredicted LWD with a mean error (ME) of 2.3 and 3.9 h day-1, respectively. The CFL model, a corrected version of the FL model using a weight value, reduced ME in LWD forecasts to -1.1 h day-1. In the Melcast and TOM-CAST simulations, the CART and CFL models predicted timing of occurrence of action thresholds similarly to thresholds derived from on-site weather data measurements. Both models forecasted the exact spray dates for approximately 45% of advisories derived from measurements. When hindcast and forecast estimates derived from site-specific estimates provided by SkyBit Inc. were used as inputs, the CART and CFL models forecasted spray advisories within 3 days for approximately 70% of simulation periods for the Melcast and TOM-CAST disease-warning systems. The results demonstrate that these models substantially enhance the accuracy of commercial site-specific LWD estimates and, therefore, can enhance performance of disease-warning systems using LWD as an input.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3