A Lotus japonicus Cochaperone Protein Interacts With the Ubiquitin-Like Domain Protein CIP73 and Plays a Negative Regulatory Role in Nodulation

Author:

Kang Heng12,Xiao Aifang2,Huang Xiaoqin2,Gao Xioumei2,Yu Haixiang2,He Xingxing2,Zhu Hui2,Hong Zonglie3,Zhang Zhongming2

Affiliation:

1. Institute of Applied Mycology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;

2. State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China;

3. Department of Plant, Soil, and Entomological Sciences and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-2339, U.S.A.

Abstract

The calcium/calmodulin-dependent protein kinase CCaMK forms a complex with its phosphorylation target CIP73 (CCaMK-interacting protein of 73 kDa). In this work, a homolog of the animal HSC/HSP70 interacting protein (HIP) was identified as an interacting partner of CIP73 in Lotus japonicus. L. japonicus HIP contains all functional domains characteristic of animal HIP proteins. The C-terminal STI1-like domain of L. japonicus HIP was found to be necessary and sufficient for interaction with CIP73. The interaction between CIP73 and HIP occurred in both the nuclei and cytoplasm in Nicotiana benthamiana leaf cells. The interactions between CIP73 and HIP and between CIP73 and CCaMK could take place simultaneously in the same nuclei. HIP transcripts were detected in all plant tissues tested. As nodule primordia developed into young nodules, the expression of HIP was down-regulated and the HIP transcript level became very low in mature nodules. More nodules were formed in transgenic hairy roots of L. japonicus expressing HIP RNA interference at 16 days postinoculation as compared with the control hairy roots expressing the empty vector. It appears that HIP may play a role as a negative regulator for nodulation.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3